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An estimate of the time necessary for the phase points of a dynamical system to reach a specified finite domain, containing an 
asymptotically stable solution, from any initial position belonging to the specified domain is obtained with the sole assumption 
that the derivative of the Lyapunov function for autonomous second-order systems and for certain higher-order systems has a 
negative sign. © 1999 Elsevier Science Ltd. All rights reserved. 

In [1] an estimate of the upper limit of the time was obtained in the case when the Lyapunov function has a strictly 
negative derivative. 

1. Suppose the origin of the coordinates (the point O) is an asymptotically stable solution of the system of equations 

i = X ( x , y ) ,  ~= Y(x,y) (1.1) 

for which a positive-definite Lyapunov function V(x,y) is known such that V(x,y) ~ 0 along the solutions. 
We shall now estimate the time of motion of any phase point lying on the boundary of a domain Go, which is 

defined by the equation V(x,y) = Co up to the boundary of a specified domain G., which is defined by the equation 
V(x, y)  = c . .  

We will denote the lines of the family V(x, y) = C, corresponding to the parameter C, and, also, their lengths 
by l( C). 

Suppose the origin of coordinates is a singular point of the stable-focus type, and the phase point which coincides 
with the point A0 (Fig. 1) at the time t = 0 makes one complete circuit around the origin of coordinates after a 
time to along a trajectory of length y, where this trajectory is not closed. (By a "complete circuit", we mean a motion 
in which the start and the finish of the trajectory y lie on the same line of the family L(~l) which is orthogonal to 
l(C).) 

Suppose l(C) is a family of smooth convex curves when C ~< Co and the trajectory V is convex with respect to 
the point O. Then 

¥ ~  I(Co) (1.2) 

This can be shown to be so directly if l(C0) is a circle of radius P0 and y is a logarithmic spiral and the difference 
between the increments in the arcs of the circle and the spiral is equal to 

po(l -cos  o~) q~ + o (~) ,  

where Cto is the acute angle between the tangents to the circle and the spiral, and '0 is the polar angle of the 
radius vector, measured from the point of intersection of the curves in the direction of the convolution of the 
spiral. 

In the general case, suppose F is a line (or several lines) in which ~'(x,y) = 0 and F1 and F 2 are lines which are 
obtained, for example, from F by rotation through a small angle (or are represented in the formy = (1 _+ 6)~(x), 
wherey = • (x) is the equation of  the line F and 5 is a small positive number (Fig. 1)). 

Suppose B is the set of sectors, included between the lines F1 and l" 2 and containing F. The arcs of y and l(C) 
touch on the line F. Hence, within B, they are equal to an accuracy of o(~5). Outside the domains B and G,, the 
trajectory y intersects the lines l(C) at an angle a c I> or0 > 0. 

Suppose O0 is the centre of curvature for l(Co) at a point A0 ~ B. In a small circle K0 of radius 60 with its centre 
at this point, the family of  lines l(C) can be approximated by a family of circles with a common centre O0 and the 
line y is a logarithmic spiral to an accuracy O(8o). A ray traced from the point O0 through a point At ~ y n Ko 
intersects the arc Ao,4'o, which must be greater than the arc A oA~ of the line T, in At ~ B, we determine the centre 
of curvature O1 of the line l(C1) ~ A1 and a circle K1 of radius 81, a point A2 ~ y N K2 and the ray 01,42. In l(C1), 
this ray intersects the arcAv4'~, which must be smaller than the arcA v42 ~ y since the latter arc is also approximated 
by an element of a logarithmic spiral. 
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Fig. 1. 

Suppose that L(~I), a line of the family L(I~) which passes through the point Ai, intersects the line l(Co) at the 
point Ai0. By virtue of  the convexity of l(C), the are A~li0 is greater than the areA ~ i -  If A1 e B, the intersection 
of ' /wi th  F1 can be taken as the point A2. 

So, on continuing to move along '/, the line l(Co) is subdivided into the sum of the arcs AoA6,AbAi0 . . . . .  each 
of which, to an accuracy of o(6k), is greater than the corresponding element of the line '/. On taking the limit as 
n eoo (max(6, 60, 61 . . . . .  6,) ~ 0), we obtain inequality (1.2). 

Similar reasoning leads to the inequality 

l(C,) ~< ¥ (1.3) 

The assumption made above regarding the convexity of the curve Y can be discarded if Y intersects all the lines 
l(C) at an acute angle (¢x c < ~/2). 

In fact, suppose a certain trajectory T' (Fig. 1) is concave between the points E1 and E2. By assumption, the angle 
cq > oto at the point El. A ray can then be drawn from the point El at an angle of or0/2 to the tangent to 7' which 
intersects the are E~E2 at a certain point E. On specularly reflecting the arc E~E with respect to the above-mentioned 
arc, we obtain a convex are E1E (the dashed curve in Fig. 1) which intersects the line I(C) at an acute angle. 
Consequently, the arguments presented above can be applied to this arc. The procedure which has been described 
can be repeated at the point E, if this point does not lie in the sector B. Hence, after a finite number of steps, we 
arrive at the point E 2. 

We will now show that the condition ac  < rd2 is satisfied in the case of one-degree-of-freedom mechanical systems. 
The motion of such a system is described by the equations 

= y, y = - b ( x ,  y ) -  c(x) 

where b(x,y) >~ 0 and c(x) >t 0 are dissipative and conservative forces respectively. The angle etc between the phase 
velocity vector u and the vector u0 tangent to the line l(C), which, in this case, is also described by the equation 
that has been given when b(x,y) V 0, remains acute while the scalar product uo0 ~> 0 ory 2 + c2(x) + c(x)b(x,y) >I O, 
which is certainly satisfied. The requirement vv0 ~> 0 remains for equations of general form. 

After a time to, the parameter Co decreases by an amount AC (AC > 0). On the basis of inequalities (1.2) and 
(1.3) it is possible to formulate the following inequalities 

I(CO)I W M < t o < 1((7o)1 W, (1.4) 

C °=C 0-AC, W mfinfW, W gf supw ,  W r Y + y 2  
Graj Goo 

(Goo = Go\G ° is the annular domain between the lines l(Co) and/(CO)). 
The value WM is often attained on the line l(Co). For some simplication, this case will be considered further. 
The time of motion tB of a phase point through the sectors B can be estimated by the inequality tB <~ IB/Wa, 

where IB is the sum of the lengths of the portions of the line l(Co) lying in B and WB = infW in the domain B0 ffi 
B N G0o. 
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Then 

or, using (1.4) 

tO 
a C  = - ~ ( Id t~B( t  o - tB), ~t = infl  V l 

o no 

ac~olt(c°) / wM -tB / wB] (1.5) 

The solution of  this inequality depends on the choice of the width of the band B, that is, the right-hand side can 
be maximized by the choice of lB. However, in the first step, the choice oflB must be such that the right-hand side 
of  (1.5) is negative for any AC ~< Co - C.. For this purpose, it is sufficient to take Is = IB* = I(C*)Wm*/WM, W,,,* = 
inf W in the domain Go* = Go\G,. 

When lB. <~ Is <<- l(Co), a certain (or, better, the maximum) value of AC, which satisfies the inequality (1.5), is 
denoted by AC.. 

Remark.  Theright-hand sideof (1.5) in the case of fixed lB. increases, starting from zero, and the left-hand side 
of  AC = C0-  CO decreases as CO increases from C. to Co. A value C o = CO* is therefore found for which inequality 
(1.5) becomes an equality. The corresponding value for AC can be taken as AC. but AC can still be maximized by 
a new choice of/B in the interval [is., In0],/no = I(CO*)W,,o/WM, Wmo = infWin the domain between the lines l(Co) 
and l(Co.) (instead of fixing IB = LB. as was done in the first step). 

The following estimate can be given for the time to 

max(aC, I M; l(C,)IWM]~to~min[(Co-C,)Ip +lalWa; I(Co)/Wm, ] (1.6) 

M = sup[AC,/M; l(C.)/WM] in the domain Go*. 
Next, starting from the value of C = Co - AC., we obtain an estimate of the time of motion of a phase point in 

the second loop and so on until it enters the domain G.. (Hence, in estimating the time of motion of a phase point 
until it enters the domain G,, an upper estimate of both the time of motion in the loop as well as the number of 
loops is made.) 

The estimates which have been given are also suitable for an unstable focus or node if one is interested in the 
time of departure from the domain Go,. 

Example. Suppose the motion of a pendulum with a dissipative and non-linear elastic coupling is given in 
dimensionless form by the equations 

:c--y, y = - y -  2 x  3 

Here, W = [yZ + (v + 2x3)2] v2, V = x  4 + y2)/2, 1~'= _y2 and the lines V(x,y) = C are convex. 
Suppose Co = 10, C. = 5. Then, l(C.)  = 16.8 (graphical solution) and Win* = WB >! 4.5, WM = 18.9, IB* = 4. 
We take the strip between the sFaight linesy = _+1 as the sector B. Then, la = 1. 
We now take C "~= 9. Then, l(C u) =A20.8, WB = 6.0. In this case, the right-hand side of (1.5) is equal to 0.43 

which is still smaller than AC = Co - C ° = 1. In the following step, we therefore put CO = 9.5. On calculating the 
right-hand side of (1.5) again, we obtain its value as 0.55, which enables us to take AC. ~< 0.5. Then, by (1.6), we 
obtain 0.9 ~< to ~ 5.37. 

2. In the case of  multidimensional dynamical systems under conditions where Corduneanu's theorem [1] for 
estimating T, the time of motion of a phase point until it enters the specified domain, applies, we can use well- 
known results [1, paragraphs a and b, p. 67]. In fact, from paragraph a in [1], we have 

a(lxll~ u( t; t o, V ( t o, x o )) 

(to is the initial instant of time). Fixing the finite domain to be reached as II x [I ~< b, we obtain 

a(b).~u(t o + T, t o, V(to,Xo)) (2.1) 

An estimate for T also follows from the last inequality. 

Example I (an analogue of the example from [1, p. 68]). Consider the system 

:c = (-Et + A(t,x))x 

w. here E is the identity matrix and A(t ,  x)  is a skew symmetric matrix. Suppose V = x 2 + x~ + . . .  + x, 2. Then, 
V = 2~I(-DCI) + 2X2(-'/X2) + . . . . .  2Vt. 

The solution u = 0 of the scalar comparison equation/~ = 2ut (here, co(t, u) = -2ut  and the inequality V ~< co(t, 
V) is satisfied) is asymptotically stable, since the general solution u = C exp (-t2). 
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We now put to = 0; II x0 II = e2; b = 1. Since U(to) = U(to; t 0, V(to, Xo)), then U(to) = V(to, Xo) = l[ Xo II 2 = e 4. On 
the other hand, U(to) = C exp(-~o), whence we have C = e 4 and u(T) = exP2(4 - TZ). 

On taking account of the fact that, in the given case, a(ll x II) = V -- II x II, from inequality (2.1) we obtain 

T ~ 2  

Since the function l)'is negative definite in this example, an estimate of T can be obtained from the inequality 

T .  T 
A V = -~  Vdt = 2 ~ Vtdt~ infV. T 2 (2.2) 

0 0 Go. 

A V = e 4 - 1 ,  i n f V = 2 ;  T~<5 
Go. 

Example 2. For the system 

k = ( - E s i n  2 t + A(t, x))x  

we have that I)" = -2Vsin 2 t, and inequality (2.2) cannot be used. However, using (2.1), we obtain T ~< 4.5. 
Under the conditions where Matrosov's theorem [1, pp. 58 and 59] is applicable, it is also possible to obtain an 

estimate of T using the basic estimates in the proof of this theorem. In fact, if we take the domain C(ll x II)/> q to 
be the domain G. (for the meanings of the new symbols used below, see [1]), it is possible to write T ~< (K + 1) 
(x2 - xi), where ~2 - xl = 2L/rl and the quantity K is determined from the inequality 

Co- C, ;~ K min [2/L/rl,/'q/(2A)] 

I wish to  thank V. S. Sergeyev for  critical comments  in discussing the papers.  
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